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Abstract. The role of density dependence in shaping spatial patterns in tree distributions presumably
changes throughout stand development. However, empirical investigations into developmental processes
are often limited by a lack of long-term data on disturbance history, which further limits the ability to
assess the role of spatial variation in site conditions (e.g., slope, aspect, mean annual temperature). This
study included data from 289 plots within 26 primary forest stands of the Carpathian Mountains; stands
were dominated by Norway spruce (Picea abies) and driven by mixed-severity disturbance regimes. We
assessed spatial patterns in living tree positions, tree diameters, and the relative position of living trees to
dead trees. Random forest classification was used to discriminate between disturbance history, tree density,
and site conditions and their effects on the observed spatial patterns. At the stand scale, distances between
trees of equal diameter were more uniform that expected (tree diameter was showing repulsion), while tree
positions and dead trees were mostly distributed randomly. The processes that best explained the spatial
patterns were identified as self-thinning mortality and past disturbances (100-150 yr). This study demon-
strated that the plot and stand-scale spatial patterns resulted from the combination of past disturbances
and density-dependent legacies derived from earlier forest development stages.
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INTRODUCTION

Competition and disturbance are primary con-
straints on forest population structure (Coomes
and Allen 2007, Coomes et al. 2012). Our under-
standing of how the contribution of these pro-
cesses changes through time is limited by the
time-span of observational datasets documenting
how tree populations change following a distur-
bance. However, competition and disturbance
have differing effects on the spatial distribution of
mortality and surviving trees (Coomes and Allen
2007, Aakala et al. 2012, Lutz et al. 2014, Gen-
dreau-Berthiaume et al. 2016). Pairing analyses of
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spatial patterns in tree distributions with distur-
bance history reconstruction is considered an
effective alternative to long-term monitoring of
developmental changes in stem dynamics
(Coomes and Allen 2007, Lutz et al. 2014).
Neighboring trees compete to intercept available
light and the intensity of this competition increases
with tree density, contributing substantially to
mortality in high-density early-successional stands
(Coomes and Allen 2007, Murrell 2009, Larson
et al. 2015). Density-dependent mortality induces
thinning in patches of high tree density, thus pro-
moting spatial uniformity in the surviving trees
(i.e., repulsion; Peet and Christensen 1987, Larson
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et al. 2015); density effects thus decline in impor-
tance as stand develops. As surviving trees
approach their maximum longevity and external
sources of variation accumulate (e.g., distur-
bances), density-independent mortality is expected
to introduce increased randomness of tree spacing,
thus resulting in higher spatial heterogeneity
(Aakala et al. 2012, Després et al. 2014, Gendreau-
Berthiaume et al. 2016).

Density effects impose limits on development
patterns, such as relationships between produc-
tivity and density, but the character of this trajec-
tory could be influenced by environmental
factors (Weller 1987). Maximum growth rates are
likely to intensify competitive effects (Schwin-
ning and Weiner 1998), and longevity is also
likely influenced by site conditions, which may
influence density-independent factors (He and
Duncan 2000, Piao et al. 2013). When consider-
ing forest spatial patterns, dismissing site hetero-
geneity could lead to incorrect interpretations
about past density-dependent effects (He and
Duncan 2000, Piao et al. 2013).

Disturbances drive forest dynamics by influenc-
ing the spatial arrangement of trees; stand-
replacing disturbances (e.g., windstorm or insect
outbreaks) revert the forest structure to an earlier
successional stage (Frelich and Reich 1995). In
contrast, periodic low- to moderate-severity dis-
turbances (e.g., windthrow or partial insect out-
breaks) create multi-layered canopies that
contribute to more structurally complex forests
(i.e., old-growth forest structure; Halpin and Lori-
mer 2016). Mixed-severity disturbance regimes—
defined by high spatiotemporal variability in both
severity and frequency—also influence forest
structural features, such as biomass and age struc-
ture, as observed by, for example, Trotsiuk et al.
(2016) and Janda et al. (2017) in forests dominated
by Norway spruce (Picea abies (L.) Karst.) in the
Carpathian Mountains. We know of no existing
literature that explores forest spatial patterns and
accounts the local disturbance history.

Our objective was to assess the role of mixed-
severity disturbance histories in tree spatial pat-
terns in primary forests (i.e., forest relatively
uninfluenced by human activity, sensu Svoboda
et al. 2014) at the plot and stand levels; we also
considered site conditions, density dependence,
and mortality. More specifically, the following
questions were addressed: (1) In the absence of
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interspecific competition, do recent disturbances
induce the aggregation of trees and mortality
(Aakala et al. 2012, Larson et al. 2015)? In addi-
tion, in the case of low disturbance rates, does
intraspecific competition (i.e., self-thinning of
young Norway spruce trees) result in repulsion
patterns (Kenkel 1988)? Is mortality randomly
distributed in older plots and stands as in other
temperate primary forests (Aakala et al. 2012,
Larson et al. 2015)? (2) Do site conditions influ-
ence density-dependent mortality and the tree
spatial organization at the plot or stand levels
(He and Duncan 2000, Piao et al. 2013)?

MATERIALS AND METHODS

Study area

This study was conducted in the primary for-
ests of the Carpathian Mountains (Romania,
Ukraine, and Slovakia), a mountain range with
forests dominated by Norway spruce and Euro-
pean beech (Fagus sylvatica L.). We define “pri-
mary forest” according to Svoboda et al. (2014):
a forest showing little to no evidence of human
activity that persists under a natural mixed-
severity disturbances regime, but not necessarily
in late-successional stages of development. The
study area of the primary Norway spruce forest
is estimated to be approximately 4000 ha. All
sampled stands were located in mature to old-
growth developmental stages. The mixed-severity
disturbance regime of the area is characterized
by windstorms and bark beetle (Ips typographus
L.) outbreaks (Svoboda et al. 2014, Janda et al.
2017). Regeneration after disturbances is mainly
composed of Norway spruce and rowan (Sorbus
aucuparia L.) species (Bace et al. 2017). The eleva-
tion of the study sites is between 1235 and
1713 m above sea level (mean = 1435 m a.s.L.).
The mean annual temperate ranges between 1.4°
and 5.0°C. We used a base period of 1950-2000
to evaluate temperature, which was estimated
using the change factor method to downscale
Climatic Research Unit (CRU) data and World-
clim provided the high-resolution dataset; the
downscaling was done by the Landscape
Dynamics, WSL laboratory. The mean annual
precipitation in the region ranges between 500
and 2000 mm (Antolovi¢ et al. 2013). In fre-
quency, Norway spruce accounted for 95.1% of
the total living sampled tree species; S. aucuparia
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L. and Abies alba Mill. comprised 2.4% and 1.0%,
respectively; and the remaining 1.5% consisted of
Pinus cembra L., Acer pseudoplatanus L., Betula
pendula Roth., Fagus sylvatica L., Larix decidua
Mill., and Salix spp.

Data collection and processes

We established 548 circular plots (each
1000 m? in area) in 32 stands between 2010 and
2014 using a stratified random design (Svoboda
et al. 2014). Plots spanned from 45.55° N to
49.52° N and from 19.20° E to 25.47° E (see
Appendix S1: Table S1 for details). Diameter at
breast height (1.37 m height; dbh), species, and
location were recorded for all living and dead
trees >10 cm dbh and crown area projections for
five living trees >10 cm dbh per plots. Twenty-
five randomly selected canopy trees within each
plot were cored to analyze radial growth and
determine tree age. Only sampled plots that con-
tained at least 30 living trees were selected for
the spatial analyses (Park et al. 2005, Aakala
et al. 2012). Plots with at least 30 living and 10
dead trees were used for the living vs. dead trees
marked point pattern analyses (He and Duncan
2000). Filtering was also conducted at the stand
level; all stands containing less than four plots
were discarded from the analyses. Using the
above criteria, 289 plots from 26 stands were
used for the spatial analysis of living trees and
133 plots from 19 stands were utilized for the
bivariate analysis of living vs. dead trees (App-
endix S1: Table S1).

At the stand level, the mean annual tempera-
ture, slope, aspect, and country name represented
the site conditions (at the plot level, the stand
name was added). The mean annual temperature
was estimated using CRU and Worldclim as
described above (see Study area section). Slope
and aspect were recorded on all plots. Slope was
measured from the center of the plot on a 20-m
transect (10 m uphill and 10 m downbhill from the
plot center) using a Vertex. Aspect was measured
by compass in the direction of the largest slope
from plot center. Slope and aspect can affect the
size and frequency of the gap regime, and, per se,
the spatial pattern (e.g., high northerly slopes
should be more prone to large gap regime pat-
terns and result in greater spatial aggregation
with small trees inside gaps and large trees along
the edge; Hunter and Parker 1993). At the stand
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scale, we used the mean of plot slope and aspect
measurements. The site location, represented by
the stand and country names, was used as a
proxy for the distance between the plots and
stands, respectively, to highlight any regional sim-
ilarities (e.g., soil characteristics).

Plot age was estimated using the mean age of
the five oldest trees at each plot; this is consid-
ered to be a suitable method for estimating plot
age in multi-cohort stands subjected to mixed-
severity disturbance regimes (Di Filippo et al.
2016, Trotsiuk et al. 2016, Janda et al. 2017). To
estimate the stand age, the mean of all plot ages
was calculated.

Increment cores were processed following
standard dendrochronology methods (Stokes
and Smiley 1968). Two radial growth patterns
were considered as follows: (1) abrupt, sustained
increase in growth rates (releases), and (2) rapid
early growth rates (gap recruitment) that indicate
recruitment in a former canopy gap (Svoboda
et al. 2014). We used the boundary line criterion
method to assess the growth releases from indi-
vidual increment cores (Black and Abrams 2003).
Because growth releases could last for several
years, we used the maximum percentage growth
change of each release to date disturbances. All
increment cores were used to reconstruct indi-
vidual plot-level disturbance histories. The num-
ber of growth releases and gap recruitment
events was converted to a total canopy area dis-
turbed for each decade, following the approach
of Lorimer and Frelich (1989). This method is
based on the current crown area of each tree
assuming that crown area of trees that responded
to the original gap formation approximates the
size of the original gap. Current crown areas
were predicted from dbh based on a linear
regression fitted to the 1445 measured trees (five
per plot). Individual tree canopy areas were then
linked to the year of release, and tree-level distur-
bance events were summed annually and
expressed as the proportion of total canopy area,
resulting in a plot-level disturbance chronology.
Total canopy area recruited was calculated for all
trees currently present in the stand. Averages
over plot-level disturbance severities were pro-
duced to estimate stand-level disturbance histo-
ries. Disturbances were summarized based on
the number of disturbance events and the cumu-
lative amount of disturbed canopy area at the
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plot and stand scales. Short, medium, and long
time periods representing the 50, 100, and 150 yr
prior to 2014, respectively, were used to assess
both disturbance indicators.

Data analyses

Spatial analyses.— At the stand scale, plots were
considered to be homogeneous (i.e., stationary)
and isotropic due to the similar climatic and
topographic conditions. Primary Norway spruce
forests tend to be driven by mixed-severity
disturbances, which are, by definition, stochastic
processes leading to spatial randomness, but they
can also promote aggregation in recently dis-
turbed areas and, by extension, younger develop-
mental stages (Svoboda et al. 2014). We used the
univariate cumulative L(r) function (i.e., square-
root-transformation of the cumulative Ripley’s K
(1)) to quantify the discrete (tree positions: Tree-
Pos) and continuous (dbh) variables (Illian et al.
2008). Bivariate Li5(r) function was computed to
define the pattern of living vs. dead trees (Dead)
(Illian et al. 2008). Random labeling hypothesis of
living and dead trees was tested for the bivariate
function because the mortality processes were
expected to be stochastic at the study sites (Gore-
aud and Pélissier 2003, Hou et al. 2004, Velazquez
et al. 2016). Replicate patterns were computed to
combine each plot within one stand and capture
the full statistical power of the plot-level results
(Illian et al. 2008, Raventos et al. 2010, Baddeley
et al. 2015). Replicate patterns were calculated
using means of observed and simulated test
values from the plot level.

All univariate and bivariate patterns at plot and
stand scales (i.e., replicated patterns) were tested
for complete spatial randomness and random
labeling hypotheses (for the bivariate pattern)
using the rank envelope tests (Myllymaki et al.
2017). This method allows rejection of the null
hypothesis using the prescribed significant P value
(Wiegand et al. 2016, Myllymaki et al. 2017). We
computed 2499 simulations for each rank envelope
test (Myllymaki et al. 2017). Univariate patterns
with a statistically significant P value and an
observed value below (above) the envelope
denoted repulsion (aggregation). For the bivariate
pattern, a significant P value and an observed
value below (above) the envelope represented neg-
ative correlation, segregation (positive correlation,
attraction) between dead and living trees.
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Random forest—Random forest models (Brei-
man 2001) were used to rank the variables from
disturbance history, site conditions, and tree den-
sity relative to different observed spatial pat-
terns. Random forest models are non-parametric
models (based on multiple regression) used to
rank explanatory variables by their level of
importance. Random forest models yielded 14
and 13 variables for the plot and stand levels,
respectively. The following variables were used
for the plot and stand levels: tree age, basal area,
and tree density representing the forest structure,
number of disturbances events (nb events), and
cumulative sum of disturbed canopy area (cum-
Sum CA) at 50, 100, and 150 yr prior to 2014,
which was used as a proxy to the disturbance
history. The mean annual temperature, slope,
aspect, country name, and stand name repre-
sented the site conditions at the plot level.

The variable selection using random forest
(VSURF) method was used to rank and select
important variables from the random forest mod-
els (Genuer et al. 2015). The VSURF method is
based on two prediction performances of the ran-
dom forest: the out-of-bag error (OOB) and the
variable importance. To compute the estimated
OOB error, the model used a subsample of the
regression trees to compute predictions and com-
pare them with the remaining regression trees
(named out-of-bag trees). Thus, the estimated
OOB error rate measured the model misclassifi-
cation rate for classification and the mean square
error (MSE) for regression (Genuer et al. 2010,
2015). If the OOB error is 0%, an over-fitting
model is denoted (i.e., a perfect model). If the
OOB error is below 40%, the model is considered
to be suitable (Breiman 2001).

The variable importance used in VSUREF is
based on the permutation importance indices. It
consists of randomly permuted values of one
variable and computed disturbed OOB error that
will be compared with the undisturbed OOB
error. The greater the difference between the dis-
turbed OOB and the undisturbed OOB errors,
the higher the variable importance will be, and
vice versa (Genuer et al. 2010, 2015).

To rank and select the variables from VSURF
models according to their importance, we chose
to stop the variable selection at the interpretation
level, which is a conservative approach, sensu
Genuer et al. (2010, 2015). Important variables
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that were highly related to the spatial pattern
were selected, and only the poorly related vari-
ables were removed from the model. A total of
3000 trees were simulated to build the random
forest models.

All importance variables found using VSURF
were individually tested against spatial pattern
groups (i.e., random, repulsion/segregation, and
aggregation/attraction) using the Kruskal-Wallis
test. When the Kruskal-Wallis test was signifi-
cant (P < 0.05), a post hoc pairwise comparison
Nemenyi test was performed to discriminate the
effect of each spatial pattern group on the impor-
tance variable.

All statistical tests and spatial analyses were
conducted in R (R Core Team, 2016). The spatial
statistics were computed using the package
“spatstat” (Baddeley and Turner 2005), and the
rank envelope tests were done using the package
“GET” (available at https://github.com/myllym/
GET; Myllymaki et al. 2017). The “VSURF” pack-
age was employed for the random forest VSURF
model (Genuer et al. 2015), and “PMCMR” pack-
age was used for the post hoc pairwise compar-
ison Nemenyi test (Pohlert 2014).

REsuLTs

Stand scale

Stand ages ranged between 141 and 280 yr
(mean = 218.6 + 30.5 significant difference [SD];
see Appendix S1: Table S1 and Fig. S1 for plot
age distributions). The mean basal area (+SD)
and living tree density were 55.06 m*/ha (+7.88)
and 546.81 stems/ha (£114.91), respectively
(Appendix S1: Table S1). At the stand scale, the
random pattern was the most common for the
tree positions (TreePos; 50.0%) and the random
labeling between living vs. dead trees (Dead;
63.2%); nonetheless, repulsive spatial distribu-
tion was observed for dbh in all 26 stands
(Table 1). Positive correlation (i.e., attraction)
between dead and living trees accounted for
31.6% of the stand-level spatial patterns, and the
aggregation patterns for the TreePos represented
11.5% (Table 1). The mean OOB error results
from the VSURF models were between 16.7%
and 50.3% (mean = 28.7% + 13.5 SD; Table 2).

At the stand scale, no random forest models
were computed for the dbh mark because all
stands displayed repulsion. For the TreePos, the
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Table 1. Spatial patterns at plot and stand levels, classi-
fied as aggregation, random, or repulsion according
to the rank envelope test (see Materials and methods
for more details).

Patternsi
Scale Markt n  Aggregation Random Repulsion
Plot TreePos 289 23 237 29
dbh 289 1 192 96
Dead 133 18 112 3
Stand TreePos 26 3 13 10
dbh 26 0 0 26
Dead 19 6 12 1

t TreePos—tree position only; dbh—tree diameter at
1.37 m; Dead—living vs. dead trees.

1 Aggregation for “Dead” mark denotes mutual attraction
(i.e., positive correlation) between dead and living trees,
while repulsion denotes mutual repulsion (i.e., negative corre-
lation) between dead and living trees.

mean temperature and the cumulative sum of
the disturbed canopy area within the last 100 yr
best explained the spatial pattern (Table 2),
although the mean OOB error was high (50.3%).
Stand age and tree density were the best vari-
ables that explained the spatial pattern for Dead
at the stand scale (Table 2).

Table 2. Random forest results for each scale and
marks; 3000 decisions trees were analyzed.

Mean Interpretation
Scale Markt OOBi selected variables
Plot TreePos 0.1852 Stand name, basal area, density,
mean temperature, nb events 100
dbh  0.3169 Density, mean temperature,
country name
Dead 0.1666 Age, mean temperature, cumSum
CA 150
Stand TreePos 0.5031 Mean temperature, cumSum CA
100
dbh NA§ NA
Dead 0.2632 Age, density

Notes: The selected variables from VSURF were ordered
by decreasing level of importance (the first variable is the
most important) based on the 14 and 13 variables at the plot
and stand scale, respectively. The tested variables were as fol-
lows: country name, age (yr), number of disturbance events
in the last 50, 100, and 150 yr (nb events), cumulative sum of
disturbed canopy area in the last 50, 100, and 150 yr (cum-
Sum CA), mean annual temperature (°C), slope (%), aspect
(%), basal area (mz/ha), tree density (stems/ha), and stand
name (for the plot-level analyses only). OOB, out-of-bag error;
VSURE, variable selection using random forest.

t TreePos—tree position only; dbh—tree diameter at
1.37 m; Dead—living vs. dead trees.

1 Mean OOB—mean OOB rate from 0 to 1.

§ Replicated dbh patterns all showed repulsion; random
forest analysis could not be performed.
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Plot scale

At the plot scale, random spatial pattern was
most common for the TreePos, dbh, and Dead
variables, accounting for 82.0%, 66.4%, and
84.2%, respectively (Table 1). The positive corre-
lation (i.e., attraction) varied from 0.3% for the
dbh to 8.0% for the TreePos and 13.5% for the
Dead pattern (Table 1).

For tree position at the plot scale, the stand
name ranked first in importance following by the
basal area, tree density, mean temperature, and
disturbance indicators (number of events in the
last 100 yr; Table 2). For the dbh marks at the
plot scale, the tree density, mean temperature,
and country name variables best explained the
spatial pattern (Table 2). The spatial patterns
describing the living vs. dead trees at the plot
scale were mainly explained by the plot age and
mean temperature, but also the cumulative sum
of the canopy area disturbed in the last 150 yr.

Spatial pattern variables interpretation

The interpretation of variables selected using
VSURF models, such as tree density, annual
mean temperature, or the cumulative sum of dis-
turbed canopy area in the last 100 or 150 yr, was
tested individually (Appendix S1: Fig. S2). The
majority of them did not show any SD between
the spatial patterns (Appendix S1: Fig. 52). At the
stand scale, the selected parameters were not sig-
nificant when the parameters were tested indi-
vidually. However, in the case of the random
labeling between living and dead trees at the
stand scale, positive correlation between living
and dead trees was mainly observed for stands
under 205 yr of age and where the tree densities
were above 540 trees/ha (Fig. 1).

DiscussioN

Tree spatial pattern is driven by multiple
processes in the Carpathian Mountains primary
Norway spruce forests (Table 2; Fig. 1), including
density-dependent mortality, disturbance lega-
cies, and site conditions (i.e., site location and
mean annual temperature; Table 2). Although
the study stands were in mature or old-growth
developmental stages, the developmental differ-
ences between younger and older stands (i.e.,
younger stands were defined as stands under
205 yr old with a tree density above 540 trees/ha)
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Fig. 1. Spatial pattern of living vs. dead trees in rela-
tion to the stand age (yr) and tree density (stem/ha) at
the stand scale. Green triangles represent a random pat-
tern, red circles denote a positive correlation (i.e., attrac-
tion) between dead and living trees, and blue squares
indicate a negative correlation (i.e., segregation).

explain variations in tree patterns. Stands
younger than 205 yr had a high proportion of
positive correlation (i.e., attraction) between dead
and living trees, with 71% of stands displaying
a positive correlation (Table 2; Fig. 1). Density
dependence is recognized as an important driver
of early-successional forest dynamics (Coomes
and Allen 2007, Larson et al. 2015), but its effects
taper off as tree densities decline throughout
maturation toward old-growth stages (He and
Duncan 2000). Therefore, the density-dependent
mortality observed in this study could be consid-
ered a relic from previous developmental stages,
eventually leading to random mortality that is
commonly observed in older, late-successional
stands (Aakala et al. 2012, Larson et al. 2015).
The uniformity of spacing between similarly
sized trees (i.e., dbh spatial pattern displayed
repulsion at the stand scale; Table 1) is consid-
ered to be the result of the density-dependent
mortality that promotes spatial uniformity
among surviving trees (Kenkel 1988, Yu et al.
2009). In the absence of interspecific competition
(95.1% of the sampled trees were Norway
spruce) and recent stand-replacing disturbances,
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the self-thinning process seems to be at least a
partial driver of the spatial pattern. This suggests
that the density-dependent mortality and the
intraspecific competition during the earlier
development stages had an impact on forest
structure in later development stages (Kenkel
1988, Zhang et al. 2009, Gendreau-Berthiaume
et al. 2016).

Density-dependent and independent processes
also interact with site conditions, such as temper-
ate and soil characteristics (Getzin et al. 2006,
Piao et al. 2013). Of all the tested variables that
described site conditions (i.e., mean annual
temperature, slope, aspect, or site location to
highlight any regional similarities, such as soil
characteristics), only mean annual temperature
appeared to play a role in spatial patterns
(Table 2). The mean annual temperature can
limit the tree growth and maximum size, leading
to smaller-statured forests at higher altitudes
(Holeksa et al. 2007). In addition, the mean
annual temperature has indirect effects on mor-
tality by promoting insect outbreaks (e.g., bark
beetle outbreaks) during warmer periods. War-
mer temperatures could also reduce available
soil moisture for trees, which can lead to drought
events (Williams et al. 2013). However, the mean
annual temperature was significant only for one
pattern: the dbh at the plot scale (random pat-
terns were significantly linked to cooler sites
compared to repulsion patterns; Appendix S1:
Fig. S2b). Perhaps, slower growth in higher alti-
tudes would allow random patterns to persist in
post-disturbance sites; indeed, disturbances
probably introduce randomness in stand struc-
ture. Thus, the mean annual temperature is not
likely the main driver explaining spatial patterns
of trees.

Slope, which might affect disturbance rates by
increasing the number or size of gaps due to the
higher tree vulnerability on steep slopes (Hunter
and Parker 1993), aspect, which might influence
tree growth rates by temperature and exposure
to sunlight, and site location did not play a role
in tree spatial patterns. Only the country location
was selected from the random forest analysis for
dbh at the plot scale (Table 2). Perhaps, steep
slopes and northerly aspects in the Carpathian
Mountains did not influence the disturbance
rates through an increased number or size of
gaps, as was expected (Hunter and Parker 1993).
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Disturbances that occurred during earlier
developmental stages (i.e., 100-150 yr prior to
sampling) influenced current spatial patterns
(Table 2). The cumulative sum of disturbed area
from the last 100 and 150 yr selected by the ran-
dom forest model (Table 2) corresponded with
large disturbances in the western Carpathians
some time during the mid-19th century (Janda
et al. 2017). Related to these high-intensity dis-
turbances, density-dependent mortality was
ongoing 100-150 yr ago, which promoted self-
thinning and repulsion among trees as they
grew. In contrast, recent disturbances (i.e., 50 yr
prior to sampling) did not have a significant
impact on current tree spatial patterns. The dis-
turbance intensity and frequency were lower in
the past 50 yr (e.g., no recent stand-replacing dis-
turbances in the study area; Svoboda et al. 2014,
Janda et al. 2017, Bace et al. 2017), and the den-
sity-dependent mortality was minimized because
there was less regeneration colonizing recent
gaps; thus, self-thinning and tree repulsion were
relatively minor processes among more mature
cohorts. Other studies have demonstrated that
stochastic, frequent, and small-scale disturbances
can drive temperate forest structure by accelerat-
ing processes that promote greater complexity
and random tree spatial patterns (Woods 2004,
Fraver and White 2005, Halpin and Lorimer
2016, Meigs et al. 2017). Thus, in addition to
self-thinning process and site condition effects,
disturbances occurring during younger develop-
mental stages leave a legacy evident in later
developmental stages.

Our main finding was that tree spatial patterns
of Norway spruce forests in the Carpathian
Mountains developed from disturbances and
the resultant density-dependent legacies that
occurred about 100-150 yr ago, when the post-
disturbance forest was composed of more areas
in early development stages. We anticipated that
density-dependent competition early in stand
development would induce uniformity in tree
distributions (Lutz et al. 2014); however, this
study revealed some processes underlying tree
distribution patterns in primary Norway spruce
forests. Self-thinning processes during the den-
sity-dependent developmental stages induced
tree diameter repulsion and then, in later devel-
opmental stages, density-independent mortality.
Our study confirmed that site differences, as
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indicated by location, and mean annual tempera-
ture, which may influence stem packing, need to
be considered in demographic treatments of for-
est processes (He and Duncan 2000, Piao et al.
2013). This dataset provides rare insight into
the demographic processes involved in stand
dynamics of monospecific forests, a critical com-
ponent underlying mechanism-based predictions
of numerous forest processes (Coomes et al.
2012). Applying similar efforts into studies of
commingling, monospecific and mixed stands
(especially forest types dominated by Fagus
sylvatica L.) will provide deeper insight into the
relationships between life-history differences and
ecosystem functions, and it can help improve
forecasts of shifting species distributions and
forest functions.
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